

P.O. Box 715 Dacula, GA 30019 www.SiliconeSpectator.com

> Silicone Spectator™ is electronic newsletters in the field of Silicone Chemistry, placed on the web four times a year. We welcome comments, articles and information on the content of this newsletter.

Silicone Spectator is a trademark of SurfaTech Corporation ©2008 All rights reserved

Reactive Silicones

Editors Note: This edition of **The Silicone Spectator** will address silicone materials that can be used as reactants in the preparation of polymers in which silicone is merely one component. These hetropolymers are of growing interest in many market segments, because the properties of common polymers can be altered by inclusion of small amounts of silicone if placed correctly in the polymer.

March 2008 Volume 2, Issue 1

Reactivity

Contributed by: Tony O'Lenick of Siltech LLC

Silicone compounds that have been prepared to have reactive functional groups can be used as raw materials for the preparation of polymers in which they make up only one part^{1,2}. The reason for the inclusion of the silicone portion in the new polymer is to obtain a new hetero-polymer possessing some of the properties of silicone.

This approach has been utilized in the preparation of many derivatives of dimethicone copolyol compounds³.

There are two types of silicone compound that can contain reactive groups⁴:

Comb	
CH ₃	CH ₃ CH ₃ CH ₃
CH ₃ -Si((O-Si-) _m -(O-Si-) _n -O-Si-CH ₃
CH ₃	R CH_3 CH_3
Terminal	
	CH ₃ CH ₃ CH ₃
R -(CH ₂) ₃ -	Si(O-Si-) _n -O-Si-(CH ₂) ₃ -R
	CH ₃ CH ₃ CH ₃

Clearly, the choice of the location of the reactive group (comb (internal) or terminal silicone), will have a dramatic impact on the properties of the hetero-polymer. Molecular weight, percentage silicone, and crosslink density are all affected by the choice. **Dimethicone Copolyol Derivaties**

ANIONIC COMPOUNDS

Hydrocarbon Products	Silicone Products
Phosphate Esters	Silicone Phosphate Esters ^{5,6}
Sulfates	Silicone Sulfates ⁷
Carboxylates	Silicone Carboxylates ^{8,9}
Sulfosuccinates	Silicone Sulfosuccinates ^{10,11}

CATIONIC COMPOUNDS

Hydrocarbon Products	Silicone Products	
Alkyl Quats	Silicone Alkyl Quats ¹²	
Amido Quats	Silicone Amido Quats ¹³	
Imidazoline Quats	Silicone Imidazoline Quats ¹⁴	

AMPHOTERIC COMPOUNDS

Hydrocarbon Products	Silicone Products	
Amino Proprionates	Silicone Amphoterics ¹⁵	
Betaines	Silicone Betaines ¹⁶	
Phosphobetaines	Silicone Phosphobetaines ¹⁷	

NONIONIC COMPOUNDS

Hydrocarbon Products	Silicone Products
Alcohol Alkoxylates	Dimethicone Copolyol
Alkanolamids	Silicone Alkanolamids ¹⁸
Esters	Silicone Esters ^{19,20,21,22}
Taurine Derivatives	Silicone Taurine ²³
Isethionates	Silicone Isethionates ²⁴
Alkyl Glycosides	Silicone Glycosides ²⁵

References

- 1. Siltech Brochure (http://www.siltechpersonalcare.com/pdfs/brochures/Siltech%20CorpBrochure%202007.pdf)
- 2. Siltech Brochure (http://www.siltechpersonalcare.com/pdfs/brochures/Siltech%20CorpBrochure%202007.pdf)
- 3. O'Lenick, Anthony, Silicones for Personal Care,
- 4. O'Lenick, Anthony, Silicones for Personal Care, 2nd edition
- 5. U.S. Patent 5,149,765, September 1992 to O'Lenick.
- 6. U.S. Patent 4,724,248, February 1988 to Dexter et al.
- 7. U.S. Patent 4,960,845, October 1990 to O'Lenick.

Silicone Spectator P.O. Box 715 Dacula, Ga 30019

Andrew O'Lenick Editor

Page 3

8. U.S. Patent 3,560,544, February 1971 to Haluska.

Silicone Spectator

- 9. U.S. Patent 5,296,625, March 1994 to O'Lenick. 10. U.S. Patent 4,717,498, January 1988 to Maxon.
- 11. U.S. Patent 4,777,277, November 1998 to Colas.
- 13. U.S. Patent 5,098,979, March 1992 to O'Lenick.
- 14. U.S. Patent 5,153,294, October 1992 to O'Lenick.
- 15. U.S. Patent 5,196,499, February 1993 to O'Lenick.
- 16. U.S. Patent 5,073,619, December 1991 to O'Lenick.
- 17. U.S. Patent 4,654,161, March 1987 to Kollmeier.
- 18. U.S. Patent 5,237,035, August 1993 to O'Lenick.
- 19. U.S. Patent 5,070,171, December 1991 to O'Lenick.
- 20. U.S. Patent 5,070,168, December 1994 to O'Lenick.
- 21. U.S. Patent 4,724,258, issued February 1988 to Dexter.
- 22. U.S. Patent 6,338,042, December 2002 to O'Lenick.
- 23. U.S. Patent 5,280,099, January 1994 to O'Lenick.
- 24. U.S. Patent 5,300,666, April 1994 to O'Lenick.
- 25. U.S. Patent 5,120,812, June 1992 to O'Lenick

These materials will be covered in detail in subsequent issues of Silicone Spectator.

In this edition, we will concentrate on silicone polymers that can be used as raw materials to make different polymers.

The reactivity is based upon reactive groups attached to the silicone backbone through hydrosilylation.

Reactive Silicones

Contributed by: Rick Vrckovnik of Siltech Corporation

Reactive silicones consist of multifunctional or linear-difunctional silicone pre-polymers with reactive terminal end-groups. These silicones can be co-reacted into various polymers used in coatings, plastics, resins and other applications to increase flexibility, slip, mar resistance, high temperature stability and oxidative permeability. The inclusion of silicone pre-polymer can also help decrease the glass transition temperature of the polymer.

1. Silicone Compounds with Hydroxyl Groups

These can be used in esterfication, transesterfication and any other reaction where standard organic hydroxyl compounds are used.

Comb
CH ₃ CH ₃ CH ₃ CH ₃
CH ₃ -Si(O-Si-) _m -(O-Si-) _n -O-Si-CH ₃
 CH ₃ (CH ₂) ₃ CH ₃ CH ₃
 OH
Terminal
CH ₃ CH ₃ CH ₃
 HO-(CH ₂) ₃ -Si(O-Si-) _n -O-Si-(CH ₂) ₃ OH
 CH ₃ CH ₃ CH ₃

Examples

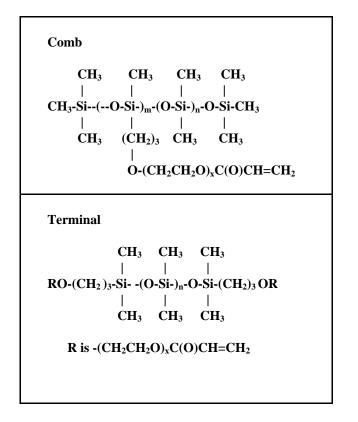
Typical Products	Properties & Applications	Appearance	Mol. Wt.	Equivalent Wt.
OH AO (Comb)	Low molecular weight reactive silicone. Contains one reactive group on a heptamethyltrisilox- ane backbone. Used as a chain terminator and polymer modi- fier.	Clear Liquid	280	280
OH C50 (Comb)	High molecular weight trifunc- tional silicone pre-polymer.	Clear Liquid	11,600	3,800
OH J10 Comb	High molecular weight multi- functional silicone pre-polymer.	Clear Liquid	8,800	880
OH Di-50 Terminal	Linear difunctional hydroxyl- terminated silicone pre-polymer	Clear Liquid	4,000	1,980
OH Di-100 Terminal	Linear difunctional hydroxyl- terminated silicone pre-polymer. Twice the molecular weight of OH Di-50	Clear Liquid	7,700	3,800

Reaction With Methyl esters

 $\begin{array}{ccccc} & & & & O \\ & & & & \parallel \\ \text{--Si-CH}_2\text{CH}_2\text{CH}_2\text{OH} & + & R_1\text{COOR}_2 & \rightarrow & \text{---Si} & \text{CH}_2\text{CH}_2\text{CH}_2\text{OCR}_1 & + & R_2\text{OOH} \\ & & & \parallel \\ & & & \parallel \end{array}$

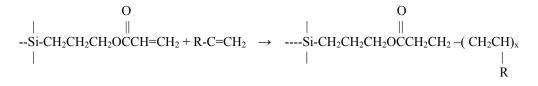
Reaction With Carboxylic Acids

$$\begin{array}{ccccc} & & & & O \\ & & & & | & & | \\ --Si-CH_2CH_2CH_2OH & + & R_1COOH & \rightarrow & ---Si CH_2CH_2CH_2OCR_1 & + H2O \\ & & & | & & | \end{array}$$

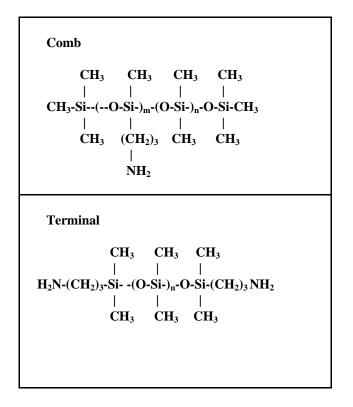

Reaction With Isocyanates

Reaction With Epoxides

$$\begin{array}{cccccc} & & & & OH \\ | & & / & \backslash & & | & | \\ \text{--Si-CH}_2CH_2CH_2OH & + & CH_2\text{---CH} - R & \rightarrow & \text{-----Si-} CH_2CH_2CH_2OCH_2CH-R \\ | & & | & & | \end{array}$$


2. Silicones with acrylate functional groups.

These can be co-reacted with vinyl and other acrylate monomers in free radical polymerization reactions.


Typical Products	Properties & Applications	Appearance	Mol. Wt.	Equivalent Wt.
ACR D208	Water-soluble multi-functional acrylate silicone pre-polymer.	Clear Liquid	2,200	1,400
ACR D2	Multi-functional acrylate sili- cone pre-polymer.	Clear Liquid	1,790	700
ACR Di-50	Linear difunctional acrylate- terminated silicone pre-polymer.	Clear Liquid	4,100	2,050
ACR Di-100	Linear difunctional acrylate- terminated silicone pre-polymer. Twice the molecular weight of ACR Di-50	Clear Liquid	7,800	3,900
ACR Di-1508	Linear difunctional water dis- persible acrylate Silicone pre- polymer	Clear Liquid	2,100	1,050

Reaction With Vinyl and other acrylate Monomers

3. Silicone compounds with amino functional groups.

These can be reacted with carboxylic acids, methyl esters and other reaction where standard organic amines are used.

Products	Properties & Applications	Appearance	Mol. Wt.	Equivalent Wt.
NH Di-8	Linear difunctional amino- terminated silicone pre-polymer.	Clear Liquid	850	425
NH Di-50	Linear difunctional amino- terminated silicone pre-polymer.	Clear Liquid	3,600	1,800

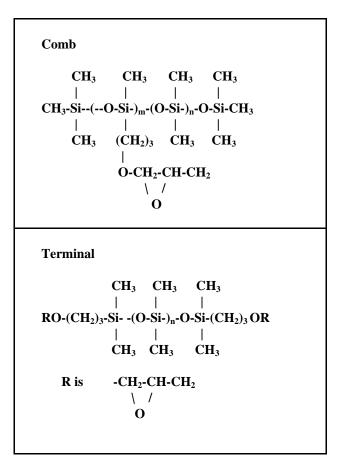
Page 8

Reaction With Methyl Esters

$$\begin{array}{cccccc} & & & O \\ & & & | & & | \\ -\text{Si-CH}_2\text{CH}_2\text{CH}_2\text{NH}_2 \ + \ R_1\text{COOR}_2 \ \rightarrow \ & -\text{---Si}\ \text{CH}_2\text{CH}_2\text{CH}_2\text{NHCR}_1 \ + \ R_2\text{OOH} \\ & | & | \end{array}$$

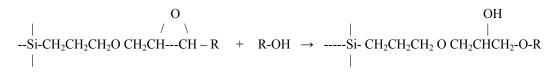
Reaction With Carboxylic Acids

$$\begin{array}{ccccc} & & & & O \\ & & & & | & & | \\ --Si-CH_2CH_2CH_2NH_2 \ + \ R_1COOH \ \rightarrow & ---Si\ CH_2CH_2CH_2NHCR_1 \ + \ H2O \\ & & | \end{array}$$


Reaction With Isocyanates

Reaction With Epoxides

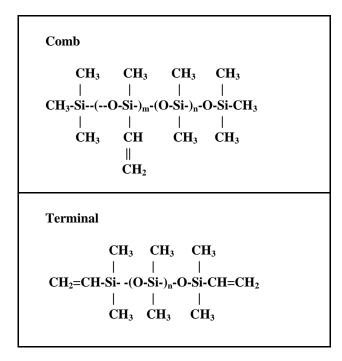
 $\begin{array}{ccccccc} & & & & & OH \\ & & / & \backslash & & & | & & | \\ \text{--Si-CH}_2CH_2CH_2NH_2 & + & CH_2\text{---CH} - R & \rightarrow & \text{-----Si-} CH_2CH_2CH_2NHCH_2CH-R} \\ & & | & & | \end{array}$


4. Silicone with epoxy functional groups.

These can be reacted with alcohols, amines, epoxides and any other reaction where organic standard organic epoxides are used.

Products	Properties & Applications	Appearance	Mol. Wt.	Equivalent Wt.
EP C50	High-molecular-weight trifunc- tional silicone pre-polymer.	Clear Liquid	11,800	3,900
EP J10	High-molecular-weight multi- functional silicone pre-polymer.	Clear Liquid	9,300	930
EP Di-50	Linear difunctional epoxide- terminated pre-polymer.	Clear Liquid	4,100	2,050
EP Di-100	Linear difunctional epoxide- terminated silicone pre-polymer. Twice the molecular weight of EP Di-50	Clear Liquid	7,800	3,900

Reaction With Alcohols



Reaction With Amines

$$\begin{array}{cccc} O & OH \\ & & / & \backslash \\ --Si-CH_2CH_2CH_2O \ CH_2CH---CH-R & + R_1R_2-NH & \rightarrow & ----- \\ & & & | & & | \\ & & & | \\ & & & | \\ \end{array}$$

5. Silicone with vinyl functionality.

These can be reacted with other vinyl containing organic monomers in free radical polymerization reactions. They can also be reacted with silicone hydrides to make silicone elastomers.

Andrew O'Lenick Editor

Products	Products & Applications	Appearance	% Vinyl	Vinyl mmoles/gm
VIN C50	High-molecular-weight trifunctional silicone pre-polymer.	Clear Liquid	0.701	0.260
VIN J10	High-molecular-weight multi-functional silicone pre-polymer.	Clear Liquid	3.190	1.182
VIN 70	70 cps linear vinyl terminated silicone pre-polymer.	Clear Liquid	1.390	0.514
VIN 100	100 cps linear vinyl terminated silicone pre-polymer.	Clear Liquid	0.882	0.327
VIN 200	200 cps linear vinyl terminated silicone pre-polymer.	Clear Liquid	0.500	0.185
VIN 1000	Linear 1000 cps vinyl-terminated silicone pre-polymers with viscosities ranging from 70-65,000 cps.	Clear Liquid	0.250	0.0925
VIN 5000	5,000 cps linear vinyl terminated silicone pre-polymer.	Clear Liquid	0.115	0.0426
VIN 10000	10,000 cps linear vinyl terminated silicone pre-polymer.	Clear Liquid	0.100	0.0370
VIN 20000	20,000 cps linear vinyl terminated silicone pre-polymer.	Clear Liquid	0.080	0.0296
VIN 65000	65,000 cps linear vinyl terminated silicone pre-polymer.	Clear Liquid	0.050	0.0185

Reaction With Vinyl Monomers

$$\begin{array}{c} |\\ \text{--Si-CH}=\text{CH}_2 + \text{R-C}=\text{CH}_2 \rightarrow & \text{----Si-CH}_2\text{CH}_2 - (\text{ CH}_2\text{CH})x \\ | & | \\ R \end{array}$$

Reaction With SiH

Silicone Spectator P.O. Box 715 Dacula, Ga 30019

Andrew O'Lenick

Editor

Page 12

© 2005 Thomas O'Lenick

About Silicone SpectatorTM

Silicone SpectatorTM is electronic newsletters in the field of Silicone Chemistry, placed on the web four times a year. We welcome comments, articles and information on the content of this newsletter.